AN ENDOGENOUS GROWTH MODEL TO EXPLAIN
THE LINK BETWEEN EQUALITY AND GROWTH.
Marta Bengoa and Blanca Sanchez-Robles*
Department of Economics, University of Cantabria, Av. Los Castros s/n 39005 Santander
(Spain)

ABSTRACT:
This paper designs an endogenous growth model to explain theoretically a recently discovered empirical fact: The negative relationship between the growth rate of per capita GDP and the level of equality in rich countries (Barro, 2000; Forbes, 2000; Panizza, 2002; Banerjee and Duflo, 2003 and Voitchovsky, 2005). The main point of the model is to include equality as an argument that increases the utility of the representative agent. The model does predict a negative link between equality and growth. The intuition is as follows: more public funds devoted to social programs intended to reduce inequality may crowd out other productive activities, thus damaging per capita growth. Nonetheless, in this setting, a larger degree of equality in society may be optimal from the point of view of the utility of consumers, even if it entails lower growth.

RESUMEN
Los últimos resultados empíricos que estudian la relación entre igualdad y crecimiento, aplicados a las economías desarrolladas, rescatan una nueva vía de estudio ya que demuestran que cierto grado de desigualdad favorece el crecimiento en los países ricos (Barro, 2000; Forbes, 2000; Panizza, 2002; Banerjee y Duflo, 2003 y Voitchovsky, 2005). Este trabajo diseña un modelo de crecimiento endógeno que pretende cubrir parte del vacío teórico existente en lo referente a la relación entre igualdad y crecimiento. La principal novedad del modelo consiste en incluir la preferencia por la igualdad como un argumento en la función de utilidad del agente. El modelo predice una correlación negativa entre igualdad y crecimiento. La intuición es la siguiente: si se dedican más fondos públicos a programas sociales (destinados, a su vez, a reducir la desigualdad) se ejerce un efecto crowding out sobre otras actividades productivas, lo cual reduce el crecimiento. En cualquier caso, un grado mayor de igualdad en la sociedad puede ser óptimo desde el punto de vista de la utilidad de los agentes, aún a costa de un menor crecimiento.

KEY WORDS: equality, economic growth and public expenditure.

MSC 91B62

JEL Codes: D63, O40.

1 INTRODUCTION.

The presence of large degrees of inequality within a country or across countries has always been a cause of concern for researchers, policymakers, and ample sectors of the society. In addition, according to the U.N in its Human Development Report, the last decades have been affected by divergences in poverty and inequality across countries. Dollar and Kraay (2002) examine a sample of developing countries that have grown rapidly in the last decades and
conclude that growth has reduced poverty but has not altered the relative distribution of income—because growth has improved the standard of living of all the population1. The changes in poverty do not necessarily alter the degree of inequality in a particular country. Following these findings, it is not strange that an abundant literature on the issue of inequality has flourished in recent years. Part of these studies have been elaborated within the framework of the New Growth Theory, since it seems plausible to believe in a link between inequality and growth. In effect, investigators have been analyzing whether a faster growth rate entails a more even distribution of income within a country or across countries or, instead, it increases inequality because the gains from growth are received only by a small fraction of the population, either pertaining to a particular nation or to a group of countries of the world. The reverse link has also been explored, by means of formulating a basic question: is inequality harmful for economic growth or, instead, more unequal societies tend to grow faster?

Regarding the first issue, Kuznets (1955), in a classical paper, asserted that inequality first increases and later decreases during the process of economic development, that is, the explanation of the Kuznets curve. This hypothesis has been tested extensively2. Recent papers that find support for the hypothesis are Eusufzai (1997) and Savvides and Stengos (2000). Barro (2000) also reports some findings that lead him to conclude that the Kuznets curve is a well-established empirical regularity.

Nonetheless, a new paper by Sala-i-Martín (2005) posits that global income inequality has been reduced between 1980-1998. In the paper there is a careful distinction and observation between within country inequality and across country inequality. The author confirms that within country inequality in several countries (USA, UK, Australia and China) has increased. However, across countries differences in per capita income have narrowed remarkably, especially due to the dramatic improvement in living conditions in China and India, offsetting the within countries effect. Dollar and Kraay (2002) claim that growth has not clearly increased inequality for a sample of 80 countries over four decades, since the income of the poor rises one-for one with the overall growth.

As we can tentatively conclude examining the literature (further revision in section 2) the link from growth to inequality is, at least, controversial. Nevertheless, and although this brief comment on the link from growth to inequality seemed adequate in order to center the issue of this paper, it will focus in the second aspect, i.e. the impact that inequality may exert on economic growth. This topic has been covered in a number of recent papers, but mostly in the context of political economic models. Some of them will be commented below.

This paper provides a possible explanation to a recently discovered empirical fact: in rich countries, there is a negative correlation between equality and economic growth (Barro, 2000; Forbes, 2000; Panizza, 2002; Banerjee and Duflo, 2003; Voitchovsky, 2005 and Bengoa and Sánchez-Robles, 2005). Here we want to assess the issue form the point of view of standard growth models. Hence this paper designs an endogenous growth model, which accounts for the

1 Inequality and poverty are not the same. This statement may seem trivial, but these terms are often confused especially by the non-specialists. For a discussion of differences between concepts see Sala-i-Martín (2002).

2 For a revision see Bruno et al. (1998).
relationship between economic growth and equality. The model extends Barro (1990) in one main feature: the inclusion of a variable of welfare, which is used as a proxy for equality. Government resources are allocated to infrastructure and to social services (welfare). As the share of Government spending that is allocated to welfare increases, a crowding out effect\(^3\) occurs due to fewer resources allocated to infrastructure, which decrease production. The consumption enhance by welfare spending is included in the utility function. It is true that individuals do not get utility from spending \textit{per se}, but from the goods and services that can be obtained thanks to this spending: hospitals, education, security, or just the sensation of well being associated to living in a more egalitarian society. We assume that citizens in this country worry about equality, they prefer more equality to less equality and hence their utility increases if the degree of equality is higher.

The paper is organized as follows: section 2 motivates the paper by presenting the links from inequality to growth. Section 3 designs an endogenous growth model that accounts for the negative impact that equality may exert on growth. Section 4 offers some conclusions and suggests further research.

\section{2. \textbf{THE LINKS FROM INEQUALITY TO GROWTH.}}

As it was stated briefly in the introduction, the links between inequality and growth are rather complex. There is no consensus in the theoretical literature or in the empirical studies about how a country’s level of income inequality predicts its subsequent rate of economic growth. The sign of the correlation between both variables is also unclear. We can find analyses, at the theoretical and the empirical level, posing either a positive or a negative link from inequality to growth. The theories examining the relationship between income distribution and growth may be classified in two large groups\(^4\). The first category comprises the set of contributions that predict a positive link from inequality to growth; this hypothesis may be traced back to Keynes (1920) and was later on pursued by Kaldor (1956), Bourguignon (1981), Benabou (1996b) and Galor and Tsiddon (1997). On the other side, in turn, we may classify the theories that sustain a negative impact of inequality on growth following the market imperfection argument (Banerjee and Newman, 1993; Perotti, 1993; Aghion and Bolton, 1997) or the political instability and socio-political unrest (Alesina and Perotti, 1996; Benhabib and Rustichini, 1996; Aghion, Caroli and García-Peñalosa, 1999; Aghion, Banerjee and Piketty 1999).

In the context of \textit{political economy models}, there are a large number of papers that explore the relationship between the variables analyzing the behavior of voters. More unequal societies\(^5\), in which the mean income is higher than the median, will favor more redistribution and this process will entail slower growth. (Dolmas and Huffman, 1997 and Milanovic, 2000). In other words, pre-tax inequality will increase the demand for redistribution, and these pressures may

\(^3\) We use the expression crowding out in a wider way: any decrease in investment (even public investment) caused by an increase in another type of public expenditure.

\(^4\) For thorough surveys see Benabou 1996b and Aghion \textit{et al}, 1999.

\(^5\) There is an interesting exception to this claim: the so-called POUM hypothesis. If poor people anticipate large future rents, they may oppose redistribution. For a discussion and presentation of some evidence, see Benabou and Ok (1998).

15
lead the policymakers to design a complex interplay of taxes and transfers that, ultimately, could distort the economy and reduce growth (Barro, 2000).6

As it was said above, the empirical evidence on whether more equal countries tend to grow faster or slower is somehow controversial. The widespread belief in the 90s – backed up by some of the papers mentioned above, among others - was that inequality was harmful for growth. This idea, however, was challenged recently by some influential papers, Forbes (2000), Barro (2000) and Voitchovsky (2005).

Forbes (2000) featured the current belief that income inequality has a negative relationship with economic growth. She found, using panel estimation with an improved data set on income inequality, that an increase in the level of income inequality have positive effects on subsequent economic growth in the short and medium term. This relationship is robust to the use of alternative model specifications, across samples and variable definitions.

Barro (2000) analysed the different behavior between equality and growth depending on the stage of country development. To contrast that, he divided the group of countries in two sub-samples. For the low-income group the connection between inequality and growth is negative. However, in the high-income sub-sample the link turns out to be positive - for developed countries an increase in the level of inequality has a positive correlation with growth.

A new empirical study developed by Voitchovsky (2005) investigates the importance of the shape of the income distribution as a determinant of economic growth in a panel of 25 countries. The study suggests that inequality at the top end of the distribution is positively associated with growth. In other words, at the top of distribution rich individuals represent the main source of savings in the economy and large investors might also be able to spread the risk of their investment and could receive a higher rate of return. According with the author, these factors imply that higher inequality at the top end of the distribution may promote economic growth, as it boosts funds available and investment.

Finally, Bengoa and Sanchez-Robles (2005) contribute to the existing empirical evidence by presenting additional results. Two different samples were explored over the last three decades using Arellano and Bond technique applied to panel data. For the medium income nations, the relationship between equality and growth seems to be hump shaped. In the second sample, made up by high-income nations, the connection is unambiguously negative: more equality is detrimental for growth. Our empirical results suggest that the impact of equality on growth may be different at various stages of development. Specifically, if the relationship is quadratic, for less developed countries more equality will mean more growth (basically because the general political and economic climate improves), while in developed countries, where the climate is

6 There are also contributions that pose that the impact of inequality on growth can change over time as a country develops. Galor and Moav (2002) claim that, at early stages of development, inequality may be positively correlated with the rate of growth, since the drive engine of growth at that point is physical capital accumulation. In turn, this kind of investment will typically be accomplished by those fractions of the population that enjoy a higher propensity to save. Later on, though, growth may rest on human capital accumulation, which is instead favored by a larger degree of equality.
already sound, more equality associated to social expenditure may entail fewer resources devoted to productive investment⁷.

One possible explanation, for these results, is that for rich economies, more equality may damage growth since it desincentivates the undertaking of risky projects by individuals. In addition, the social payments provided by the State to reduce inequality decrease the amount of resources that are available for investment in productive capital, thus affecting growth negatively. Another possible implication is that political instability is more common in less development countries than in advanced countries, and it is also generally true that financial and insurance markets are fairly developed in rich countries, so the credit constrains problems will be more severe in the first group than in the second. In most undeveloped countries, therefore, it may be true that equality enhances growth.

However, the argument is not that clear for developed countries, since their inhabitants already enjoy reasonable levels of welfare and social stability. In these last instances, the government intervention intended to increase equality in the population may have perverse effects, because the distortion introduced by the taxes that finance social programs could damage efficiency. In other words, the crowding out effect exerted by the need to finance large expenses in social activities may jeopardize growth.

Following these arguments, this paper provides a theoretical explanation to this last empirical finding (that could seem, at first sight, counterintuitive): i.e. more equality entails a lower rate of growth in countries that have achieved a certain level of development.

In order to offer a quantitative documentation that address for this fact, Figure 1 provide some information obtained when looking at a sample of 20 developed countries⁸. Figure 1 shows the connection between the (log) Gini index in the middle of seventies, and the growth rate of per capita GDP over the years 1978-2002. The connection between the Gini index at the beginning of the period and the growth rate is clearly positive. The graphic suggests a positive connection between higher levels of inequality (as captured by the Gini indexes) and the rate of growth of per capita GDP.

Table 1 reports the value of the index for 20 developed countries in the sample, together with some summary statistics. The mean value of the Gini index for the 20 countries considered is 33.16. The country exhibiting the largest level of inequality is France, while the lowest value is attained in UK. USA is slightly above the average. Nordic countries (with the exception of Norway) have lower than average levels of inequality, according to Table 1. The reverse phenomenon is observed in the Mediterranean countries and Ireland.

⁷ Banerjee and Duflo (2003) arrive to a similar conclusion, the same as Barro (2000).

⁸ Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK and USA.
The empirical results provided by recent papers confirm the intuition obtained from the Figure. The Gini index displays a positive correlation with the rate of growth in these studies (Forbes, 2000; Barro 2000; and Bengoa and Sanchez-Robles, 2005) employing different econometric techniques. The magnitude of the coefficient for the sub-sample of high-income countries (around 0.04-0.05) is rather similar in all the econometric estimations. Results suggest that in
the medium term, an increase in a country’s level of income inequality hast a significant positive effect on economic growth. These papers found that the relationship is highly robust across samples, variables definitions and model specifications. Previous work on this topic were limited by the availability of cross-country measures of inequality, some of them have econometric problems (measurement error in inequality and omitted variable bias), and in many previous studies, the negative relationship depends on exogenous factors, such as political institutions or the level of development. Furthermore, all studies point out the need for further theoretical and empirical research on this field.

In this paper, we intend to provide some theoretical background to previous econometric results. This kind of link was detected in samples made up of developed countries; therefore, it would not be perhaps a sound strategy to base the model on the assumption that different levels of income within a country diverge in their saving rates. As Galor and Moav (2004) indicate, these differences tend to disappear over time inasmuch as countries develop. They study a model where more inequality may lead to higher growth because, at early stages of development, the higher savings rate of the rich fosters physical capital accumulation. In Kempf and Rossignol (2005) model, instead, the positive effect of inequality on growth works through innovations while the savings rates are constant. The other alternative—to base the study on the crowding out effects of social expenditure—looks like a more promising avenue for constructing this type of models.

In this regard, one line that can be pursued is to consider equality as an argument in the utility function of consumers. This procedure has not been used much, to our knowledge, yet is appealing for several reasons. First, it provides a rational explanation for the existence of mechanisms that reduce inequality but also diminish the rate of growth. One could ask how it is possible that rational agents would choose this sort of policies. By entering equality in the utility function the answer is straightforward: for some nations it can be indeed optimal to grow less but have smaller income disparities because in this way they attain a larger level of utility and of total welfare. Thus, for example, the large Welfare States (in comparison to US) that many European countries keep become justified even from the point of view of economic rationality.

Second, this procedure has not been widely explored by the literature on fiscal policy and growth. This literature has dealt extensively with the issue of public expenditure, starting with the seminal contribution of Barro (1990). The modeling strategy adopted by most papers is to consider public expenditure (for example, infrastructure) as a productive input that enters the production function of the economy together with private capital and (possibly) labor. However, not all categories of public expenditure are productive stricto sensu. In other words, public expenditure does not affect the economy exclusively via the production function. Sometimes it increases the utility of consumers without having a clear effect on productivity. Examples are

10 The lack of incentives to work brought about by too generous systems of Social Security – for instance, large unemployment benefits - is also an important point, which should not be dismissed as a potential explanation of the negative connection between equality and growth. We neglect this effect here, however, and leave it for future research, because the model presented in this paper does not include labor-leisure decisions for simplicity.

11 One exception is Olszewski and Rosenthal (2004).
national parks, the maintenance and free access to beaches or the subsidized entrance to museums. And the fact that a particular type of public expenditure is not productive does not mean necessarily that it should not be provided.

These reasons seem compelling enough to try to address this issue with a model that captures equality differently from other models: i.e. entering the preference for equality into the utility function. This exercise will be described next.

3. THE ENDOGENOUS GROWTH MODEL WITH EQUALITY.

Next we shall present an endogenous model that intends to capture the kind of crowding out considerations alluded to before and posit ultimately, in a very simple way, a negative relationship between equality and growth. The basic intuition is that social security payments intended to provide equality -or other categories of non-productive public expenditure- have to be financed, and this diverts resources from other activities. The main conclusion of the model could match rather well the current statu quo in most western countries as far as this problem is concerned. They could as well provide theoretical support for the recent empirical results mentioned above that document a negative impact of equality on growth.

The model is based upon the seminal contribution of Barro (1990). The basic assumptions of the model will be described first, and next we shall proceed to obtain an expression for the rate of growth of the economy.

3.1. Assumptions.

3.1.1. Preferences.

Households maximize the present discounted value of future utility from now to infinity. The utility function is basically of the standard CRRA type, common in models of economic growth, but we introduce a new term, S. We can consider S as a proxy of equality, as brought about by public programs of welfare. Therefore, it may include pensions and other kind of social benefits. The main rationale for taking the latter as a proxy for the former is as follows: if the resources devoted to these kinds of programs are large, then the degree of equality will increase in the society. Alternatively, S may also reflect other categories of public expending that do not have impact on production but increase the utility of agents (For example, the public maintenance of museums and its direct consequence, the low price charged to visitors).

The utility function is Cobb Douglas in the two arguments, consumption, C and a publicly provided public good, S, and concave in both. An analogous utility function has been used by Olszewski and Rosenthal (2004). Notice that people in this country have a clear preference for equality. In turn, this preference for equality can be attributed to the fact that more egalitarian societies enjoy lower sociopolitical unrest, higher levels of personal safety or just to political and ideological reasons. In this economy the agents do care about issues that are related to the provisions of public services and the amount of transfers they receive from the State, and ultimately to the level of equality in society.

Notice that State payments increase utility not because they allow the agent to consume more (in this case the model would imply that he is getting back what he is paying out of taxes to
increase consumption, and S would be tantamount to C) but rather because they are a proxy of equality: the agent represented in the model is happier if a larger degree of equality (as captured by a higher value of S) is present in the society.

Another important caveat is in order here. It could be argued that a model that refers to equality should allow for heterogeneous agents, and make explicit the income distribution prevailing in the economy. Fortunately, there is an interesting result by Caselli and Ventura (2000) that is relevant for the analysis carried out here. Caselli and Ventura (2000) show that the methodological expression of the representative agent provides valid results if the utility function is homothetic, as it is the case in this model. This assumption does not rule the possibility of agents’ heterogeneity; it means, rather, that the aggregation of all consumers behaves as the average consumer. Therefore the modeling device of a representative agent can be used in this framework, simplifying greatly the subsequent theoretical apparatus without affecting the main conclusions. On the other hand, the fact that preferences are homothetic, there are not market imperfections and taxes are proportional (as we will see below) ensures that the representative agent assumption can be used in this case without altering the basic features of the model12.

The relative weight of both arguments in the utility function, as captured by parameter ρ need not be the same. The rest of the parameters are the standard in these types of settings: σ is the rate of time preference and β represents the intertemporal elasticity of substitution among periods. There is no population growth in this economy for simplicity and we normalize initial population to 1. Hence the analysis in aggregate and in per capita terms is the same. We have already suppressed the argument t in order to alleviate notation.

$$U(0) = \int_0^\infty e^{-\rho t} u(C, S) \, dt \quad (1)$$

$$u(C, S) = \left(\frac{C^\beta S^{1-\beta}}{1-\sigma}\right)^{1-\sigma} - 1 \quad (2)$$

3.1.2. Technology.

Output Y is composed of one sort of final good, which is sold in competitive markets. Two inputs enter in the production function of the economy: private capital K and public expenditure G. Some caveats are in order here. First, (and as in Barro, 1990) there is no labor in the production function for simplicity. This assumption is harmless, though, as long as we think of private capital as an aggregate of physical and human capital. G encompasses infrastructure, understood as all kinds of public expenditure that have a positive impact in the productivity of private capital. Second, G is considered here a flow rather than a stock. This point is also innocuous: if we assume that public investment is proportional to the public stock of capital, then the analysis will be similar in both cases. Infrastructure in this model is a publicly provided rival good, not subject to congestion for simplicity13.

12 We are indebted to Ronald Benabou for pointing it out.

13 For models that deal explicitly with congestion, see Barro and Sala-i-Martin, (1992b).
Therefore the production function can be written as equation (3).

\[Y = AK^{\alpha}G^{1-\alpha} \quad (3) \]

\[0 < \alpha < 1 \]

Notice that the production function is also concave in both inputs. Nonetheless, since it exhibits constant returns to scale in K and G together, it will be able to display endogenous growth. In other words, it is an AK function, in which capital is understood as a composite of private and publicly provided goods. A is an index of efficiency in a broad sense: i.e. it can include not only technological progress *stricto sensu* but also the quality of institutions, the lack of distortions, the degree of financial efficiency, and other variables that are not captured already by the provision of infrastructure.

3.1.3. Dynamics of Private Capital.

Output net of taxes (to which we shall refer below) is devoted to saving and consumption. As it is usual in this type of setting, the law of motion of private capital K represents net investment as the difference between gross investment and break-even investment.

In which \(\tau \) is the constant tax rate, included in the equation for reasons that will be apparent below, and \(\delta \) is the rate of depreciation of private capital.

\[K = (1 - \tau)Y - C - \delta K \quad (4) \]

3.1.4. Public Sector Behavior.

The government finances public expenditure out of taxes. We are assuming a balanced budget, which is a reasonable assumption in the long run, following Barro (1990), and no capital inflows from abroad. Public expenditure is devoted to infrastructure and social security payments, in a proportion given by the parameter \(\mu \). More in particular, the government behavior can be described by the following set of equations:

It is reasonable to assume that the parameter \(\mu \) will be linked to the preferences of the individuals, at least in democracies\(^{14}\). In particular, higher preferences for equality in the individuals (higher 1-) will induce the policymakers to devote more resources to social

\[G + S = \tau Y \quad (5) \]

\[G = \mu \tau Y \]

\[S = (1 - \mu)\tau Y \]

\(^{14}\) It is beyond the scope of this paper to fully endogeneize the parameter \(\mu \), and, although no doubt interesting, it is not crucial for the basic results of this model. For a contribution that treats this issue in
expenditure, resulting in a higher $(1-\cdot)$. In the more general case, $\mu = f(\beta)$ with $f' > 0$.

Now, perhaps, it is easy to grasp the intuition behind equations 4 and 5. Total output is devoted to consumption and saving. However, the agents are only able to channel to private investment the quantity of production that is left over after taxes are paid. This explains the term $(1-\cdot)$ in equation 4. In turn, the revenues collected by the government are allocated to public expenditure in both categories, G and S.

3.2. Discussion of The Model.

3.2.1. The Competitive Solution.

As it shall be detailed below, there is an externality in this model, and therefore the market planner solution is not Pareto optimal, a social planner’s outcome being superior. We shall compute the market solution. Since individuals own the firms in this economy and there is an only asset (capital), solving the model in a simplified way, (the so-called producing-families approach) is identical to build the general equilibrium setting. For simplicity we shall follow the first procedure, applying optimal control theory in the usual fashion in order to obtain the rate of growth of the relevant variables.

Individuals maximize (1) subject to the budget constrain given by (4). C and K are the control and state variables, respectively, for this problem. We can set up the present value Hamiltonian and compute the first order conditions. If we suppose, as usual, that the economy has at the starting point some amount of both sorts of capital, and if we add the usual transversality condition (TVC), the dynamics of the economy over time will be described by the following system of non linear differential equations with a boundary condition (equation 6 below).

Where MPK is the marginal productivity of private capital.

Standard procedures in the analysis of this kind of models – i.e. taking logs and derivatives and substituting the ratio G/K by its value as described by equation 5 – allow to come up with a closed form solution for the rate of growth of the economy.

This model is of the AK type, as it was said above, and hence all relevant variables in this economy grow at the same rate (for a proof see Barro and Sala-i-Martin, 1998), given by equation. 7. The interpretation is the usual in this kind of models: i.e. the economy will grow overtime whenever the (after tax) marginal productivity of private capital, net of depreciation, exceeds the rate of time preference. The larger the willingness to smooth consumption (as captured by a larger), the smaller the rate of growth. Since the production function is homogeneous of degree one in K, G, the driving force of this economy is the interplay between K and G. Intuitively, investment in K entails higher G via the balanced budget assumption, (and also higher S) and therefore larger levels of Y. The lack of diminishing returns in K, G, considered together prevents growth from stopping, and delivers endogenous positive growth in the steady state (in fact, as it is well known, these models lack transitional dynamics and describe an economy that is always at the steady state). However, if the society requests a large amount of public revenues to be devoted to social security (in other words, if is smaller), holding constant, the rate of growth will be smaller. Therefore equation 7 posits a negative connection between the degree of equality in this economy (as captured by a large S due to a little) and the rate of growth. Notice that despite this negative connection between S and growth, agents will not choose a corner solution with no S and maximum growth because this solution would not be optimal from the point of view of utility. In other words, utility is maximized in the model (provided that the optimal control problem is solved properly) even though growth is not maximized.

The relationship between the size of the government, as measured by , and the rate of growth, is still quadratic, as in Barro (1990) and in Sala-i-Martin (1997).

Finally, a calibration exercise can help grasp these ideas. For standard values of the parameters (see Table 2). Figure 2 shows the connection between the tax rate and the growth

\[
H = e^{-\rho t} \left(C^\beta S^{1-\beta} \right)^{1-\sigma} \frac{1}{1-\sigma} + \lambda \left[(1-\tau) Y - C - \delta K \right]
\]

\[
H_C = 0 \Rightarrow e^{-\rho t} \beta C^{\beta(1-\sigma)-1} S^{(1-\beta)(1-\sigma)} = \lambda \quad (6)
\]

\[
H_K = -\lambda \Rightarrow \lambda[(1-\tau)MPK - \delta] = -\lambda
\]

\[
TVC \quad \lim_{t \to \infty} \lambda K = 0
\]
rate. It has the typical hump shaped form. When the public sector size is low, more public expenditure (and therefore more taxes) will bring about more growth. The converse is true, however, when the public sector size is beyond its optimal, since the crowding out effect on private investment offsets the beneficial effects of public activities. It can be easily shown\(^{15}\) that the optimal public sector size is equal to 1\(^{-}\), as in Barro (1990).

<table>
<thead>
<tr>
<th>Table 2. Calibration: Baseline value of the parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

Figure 2. Tax rate and growth

Figure 3 shows the link between the degree of equality in the economy (proxied by S) and the rate of growth, for a constant of 0.3 (common in many European countries). Notice that the connection is monotonically decreasing. More resources devoted to promote equality exert a crowding out effect in all the domain of S, because this variable does not enter in the production function (but only in the utility function).

4. POLICY IMPLICATIONS AND CONCLUDING REMARKS.

\(^{15}\) To see this, we just have to maximize the growth rate with respect to \(\tau\).
This paper has designed an endogenous model of public activity and growth that intends to provide a theoretical background for a puzzling empirical regularity observed in the data: i.e. the negative connection between equality and growth which is found for developed countries. The basic idea underlying the model is that social payments, intended to reduce inequality, reduce the amount of resources that the government is able to devote to investment in productive capital. In particular, the rate of growth depends positively on the fraction of public expenditure devoted to infrastructure (up to a certain point) and negatively on the amount of resources absorbed by social programs. The model can be understood in a broad sense, hence providing a simple explanation to for an empirical regularity documented in the literature: the negative link between public consumption and growth. It also helps explain why it can be optimal for some country to choose a larger level of equality at the cost of lower growth.

The model fitness establishes that, with an optimal tax rate around 0.3, a preference for equality with a higher share of government expenditure devotes to satisfy individual’s equality preference, could exert a crowding-out effect. The result predicts a decreasing effect in the growth rate of GDP per capita.

Figure 3. Equality and growth

Of course, this is a positive implication of the model. We are not posing the question of whether societies should devote more or less resources to social programs. However, governments and voters – especially in European countries – should be aware of this intertemporal trade-off between high levels of growth, high levels of per capita income and a large degree of equality in the population. This is particularly interesting concerning the recent discussion about heavy welfare systems in Europe, with particular relevance in a period of quite slow growth in these countries.
Finally, this study suggests the need for a further study of the differences between poor and rich nations that lead to inverse relationships between equality and economic growth in these two groups. Additionally, it is necessary to carry out more empirical work that investigates how these two variables and their determinants are interconnected.

REFERENCES.

APPENDIX. The social planner’s solution

The social planner maximizes the same utility functions that the individuals do. He can choose G and S optimally, and therefore he is subject to the resources constraint given by (4’). In addition, he explicitly takes into account the balanced budget assumption. In terms of the analysis of the model, this implies that he plugs the balanced budget condition into the law of motion of private capital. The control variables for his problem are C, G and S. The stock variable is again K. Taking the first order conditions for this new problem (we shall not rewrite the first order consumption for C again, since is the same as in the markets’ solution) and proceeding along the same lines as before, we get expression 10, which entails a larger rate of growth since < 1 by assumption.

\[K = Y - C - G - S - \delta K \quad (4') \]

\[H_G = 0 \Rightarrow AK^\alpha (1 - \alpha) G^{-\alpha} = 1 \quad (8) \]

\[H_S = 0 \Rightarrow e^{-\rho t} C^\beta (1 - \beta) S^{-\beta(1-\sigma)(1-\sigma)^{-1}} = \lambda \]

\[\Rightarrow \frac{C}{S} = \frac{\beta}{1 - \beta} \quad (9) \]

\[H_K = -\lambda \Rightarrow \lambda \left[(1 - \tau) A (\mu \tau A)^{\frac{1 - \alpha}{\alpha}} - \delta\right] = -\lambda \]

\[\frac{\dot{C}^*_{\text{planner}}}{\dot{C}} = \frac{1}{1 - \beta(1 - \sigma)} \left[(1 - \tau) A^{\frac{1}{\alpha}} (\mu \tau A)^{\frac{1 - \alpha}{\alpha}} - \delta - \rho\right] \quad (10) \]